Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3163, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605025

RESUMO

The transcription and replication processes of non-segmented, negative-strand RNA viruses (nsNSVs) are catalyzed by a multi-functional polymerase complex composed of the large protein (L) and a cofactor protein, such as phosphoprotein (P). Previous studies have shown that the nsNSV polymerase can adopt a dimeric form, however, the structure of the dimer and its function are poorly understood. Here we determine a 2.7 Å cryo-EM structure of human parainfluenza virus type 3 (hPIV3) L-P complex with the connector domain (CD') of a second L built, while reconstruction of the rest of the second L-P obtains a low-resolution map of the ring-like L core region. This study reveals detailed atomic features of nsNSV polymerase active site and distinct conformation of hPIV3 L with a unique ß-strand latch. Furthermore, we report the structural basis of L-L dimerization, with CD' located at the putative template entry of the adjoining L. Disruption of the L-L interface causes a defect in RNA replication that can be overcome by complementation, demonstrating that L dimerization is necessary for hPIV3 genome replication. These findings provide further insight into how nsNSV polymerases perform their functions, and suggest a new avenue for rational drug design.


Assuntos
Nucleotidiltransferases , Vírus de RNA , Humanos , Dimerização , Domínio Catalítico , Replicação Viral
2.
Commun Biol ; 6(1): 1074, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865687

RESUMO

The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 Å resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs.


Assuntos
Vírus Sincicial Respiratório Humano , RNA Polimerase Dependente de RNA/química , Ligação Proteica , RNA/metabolismo , Nucleotídeos/metabolismo
3.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37781574

RESUMO

Respiratory syncytial virus (RSV) can cause severe disease especially in infants; however, mechanisms of age-associated disease severity remain elusive. Here, employing human bronchial epithelium models generated from tracheal aspirate-derived basal stem cells of neonates and adults, we investigated whether age regulates RSV-epithelium interaction to determine disease severity. We show that following RSV infection, only neonatal epithelium model exhibited cytopathy and mucus hyperplasia, and neonatal epithelium had more robust viral spread and inflammatory responses than adult epithelium. Mechanistically, RSV-infected neonatal ciliated cells displayed age-related impairment of STAT3 activation, rendering susceptibility to apoptosis, which facilitated viral spread. In contrast, SARS-CoV-2 infection of ciliated cells had no effect on STAT3 activation and was not affected by age. Taken together, our findings identify an age-related and RSV-specific interaction with neonatal bronchial epithelium that critically contributes to severity of infection, and STAT3 activation offers a potential strategy to battle severe RSV disease in infants.

4.
J Immunol ; 211(3): 486-496, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314411

RESUMO

The human lung carries a unique microbiome adapted to the air-filled, mucous-lined environment, the presence of which requires an immune system capable of recognizing harmful populations while preventing reactions toward commensals. B cells in the lung play a key role in pulmonary immunity, generating Ag-specific Abs, as well as cytokine secretion for immune activation and regulation. In this study, we compared B cell subsets in human lungs versus circulating cells by analyzing patient-paired lung and blood samples. We found a significantly smaller pool of CD19+, CD20+ B cells in the lung relative to the blood. CD27+, IgD-, class-switched memory B cells (Bmems) composed a larger proportion of the pool of pulmonary B cells. The residency marker CD69 was also significantly higher in the lung. We also sequenced the Ig V region genes (IgVRGs) of class-switched Bmems that do, or do not, express CD69. We observed the IgVRGs of pulmonary Bmems to be as heavily mutated from the unmutated common ancestor as those in circulation. Furthermore, we found progenies within a quasi-clone can gain or lose CD69 expression, regardless of whether the parent clone expressed the residency marker. Overall, our results show that despite its vascularized nature, human lungs carry a unique proportion of B cell subsets. The IgVRGs of pulmonary Bmems are as diverse as those in blood, and progenies of Bmems retain the ability to gain or lose residency.


Assuntos
Subpopulações de Linfócitos B , Memória Imunológica , Humanos , Linfócitos B , Genes de Imunoglobulinas , Antígenos CD19/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
5.
Commun Biol ; 6(1): 649, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337079

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are related RNA viruses responsible for severe respiratory infections and resulting disease in infants, elderly, and immunocompromised adults1-3. Therapeutic small molecule inhibitors that bind to the RSV polymerase and inhibit viral replication are being developed, but their binding sites and molecular mechanisms of action remain largely unknown4. Here we report a conserved allosteric inhibitory site identified on the L polymerase proteins of RSV and HMPV that can be targeted by a dual-specificity, non-nucleoside inhibitor, termed MRK-1. Cryo-EM structures of the inhibitor in complexes with truncated RSV and full-length HMPV polymerase proteins provide a structural understanding of how MRK-1 is active against both viruses. Functional analyses indicate that MRK-1 inhibits conformational changes necessary for the polymerase to engage in RNA synthesis initiation and to transition into an elongation mode. Competition studies reveal that the MRK-1 binding pocket is distinct from that of a capping inhibitor with an overlapping resistance profile, suggesting that the polymerase conformation bound by MRK-1 may be distinct from that involved in mRNA capping. These findings should facilitate optimization of dual RSV and HMPV replication inhibitors and provide insights into the molecular mechanisms underlying their polymerase activities.


Assuntos
Metapneumovirus , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Lactente , Adulto , Humanos , Idoso , Metapneumovirus/genética , Metapneumovirus/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Mensageiro
6.
Annu Rev Virol ; 10(1): 199-215, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37137281

RESUMO

The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order Mononegavirales, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.


Assuntos
Vírus de RNA , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro , Genoma Viral , RNA Viral/genética , RNA Viral/química , Replicação Viral
7.
PLoS One ; 17(11): e0276697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355791

RESUMO

To characterize species of viral mRNA transcripts generated during respiratory syncytial virus (RSV) infection, human fibroblast-like MRC-5 lung cells were infected with subgroup A RSV for 6, 16 and 24 hours. In addition, we characterised the viral transcriptome in infected Calu-3 lung epithelial cells at 48 hours post infection. Total RNA was harvested and polyadenylated mRNA was enriched and sequenced by direct RNA sequencing using an Oxford nanopore device. This platform yielded over 450,000 direct mRNA transcript reads which were mapped to the viral genome and analysed to determine the relative mRNA levels of viral genes using our in-house ORF-centric pipeline. We examined the frequency of polycistronic readthrough mRNAs were generated and assessed the length of the polyadenylated tails for each group of transcripts. We show a general but non-linear decline in gene transcript abundance across the viral genome, as predicted by the model of RSV gene transcription. However, the decline in transcript abundance is not uniform. The polyadenylate tails generated by the viral polymerase are similar in length to those generated by the host polyadenylation machinery and broadly declined in length for most transcripts as the infection progressed. Finally, we observed that the steady state abundance of transcripts with very short polyadenylate tails less than 20 nucleotides is less for N, SH and G transcripts in both cell lines compared to NS1, NS2, P, M, F and M2 which may reflect differences in mRNA stability and/or translation rates within and between the cell lines.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , RNA Mensageiro/genética , RNA Viral/genética , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/genética , Análise de Sequência de RNA
8.
PLoS Pathog ; 18(6): e1010451, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731802

RESUMO

De novo initiation by viral RNA-dependent RNA polymerases often requires a polymerase priming residue, located within a priming loop, to stabilize the initiating NTPs. Polymerase structures from three different non-segmented negative strand RNA virus (nsNSV) families revealed putative priming loops in different conformations, and an aromatic priming residue has been identified in the rhabdovirus polymerase. In a previous study of the respiratory syncytial virus (RSV) polymerase, we found that Tyr1276, the L protein aromatic amino acid residue that most closely aligns with the rhabdovirus priming residue, is not required for RNA synthesis but two nearby residues, Pro1261 and Trp1262, were required. In this study, we examined the roles of Pro1261 and Trp1262 in RNA synthesis initiation. Biochemical studies showed that substitution of Pro1261 inhibited RNA synthesis initiation without inhibiting back-priming, indicating a defect in initiation. Biochemical and minigenome experiments showed that the initiation defect incurred by a P1261A substitution could be rescued by factors that would be expected to increase the stability of the initiation complex, specifically increased NTP concentration, manganese, and a more efficient promoter sequence. These findings indicate that Pro1261 of the RSV L protein plays a role in initiation, most likely in stabilizing the initiation complex. However, we found that substitution of the corresponding proline residue in a filovirus polymerase had no effect on RNA synthesis initiation or elongation. These results indicate that despite similarities between the nsNSV polymerases, there are differences in the features required for RNA synthesis initiation.


Assuntos
Vírus Sincicial Respiratório Humano , Rhabdoviridae , Humanos , Regiões Promotoras Genéticas , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Rhabdoviridae/genética
9.
EMBO J ; 41(3): e109728, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935163

RESUMO

Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope. These data define a helical lattice of M-dimers, showing how M is oriented relative to the viral envelope. Glycoproteins that stud the viral envelope were also found to be helically ordered, a property that was coordinated by the M-layer. Furthermore, envelope glycoproteins clustered in pairs, a feature that may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV virions. These data provide molecular insight into the organisation of the virion and the mechanism of its assembly.


Assuntos
Vírus Sincicial Respiratório Humano/ultraestrutura , Envelope Viral/ultraestrutura , Proteínas da Matriz Viral/química , Células A549 , Animais , Chlorocebus aethiops , Glicoproteínas/química , Humanos , Conformação Proteica em alfa-Hélice , Vírus Sincicial Respiratório Humano/química , Células Vero , Envelope Viral/química
10.
PLoS Pathog ; 17(12): e1010151, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914795

RESUMO

It is generally thought that the promoters of non-segmented, negative strand RNA viruses (nsNSVs) direct the polymerase to initiate RNA synthesis exclusively opposite the 3´ terminal nucleotide of the genome RNA by a de novo (primer independent) initiation mechanism. However, recent studies have revealed that there is diversity between different nsNSVs with pneumovirus promoters directing the polymerase to initiate at positions 1 and 3 of the genome, and ebolavirus polymerases being able to initiate at position 2 on the template. Studies with other RNA viruses have shown that polymerases that engage in de novo initiation opposite position 1 typically have structural features to stabilize the initiation complex and ensure efficient and accurate initiation. This raised the question of whether different nsNSV polymerases have evolved fundamentally different structural properties to facilitate initiation at different sites on their promoters. Here we examined the functional properties of polymerases of respiratory syncytial virus (RSV), a pneumovirus, human parainfluenza virus type 3 (PIV-3), a paramyxovirus, and Marburg virus (MARV), a filovirus, both on their cognate promoters and on promoters of other viruses. We found that in contrast to the RSV polymerase, which initiated at positions 1 and 3 of its promoter, the PIV-3 and MARV polymerases initiated exclusively at position 1 on their cognate promoters. However, all three polymerases could recognize and initiate from heterologous promoters, with the promoter sequence playing a key role in determining initiation site selection. In addition to examining de novo initiation, we also compared the ability of the RSV and PIV-3 polymerases to engage in back-priming, an activity in which the promoter template is folded into a secondary structure and nucleotides are added to the template 3´ end. This analysis showed that whereas the RSV polymerase was promiscuous in back-priming activity, the PIV-3 polymerase generated barely detectable levels of back-primed product, irrespective of promoter template sequence. Overall, this study shows that the polymerases from these three nsNSV families are fundamentally similar in their initiation properties, but have differences in their abilities to engage in back-priming.


Assuntos
Marburgvirus/enzimologia , Vírus da Parainfluenza 3 Humana/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sinciciais Respiratórios/enzimologia , Proteínas do Complexo da Replicase Viral/metabolismo , Animais , Células Cultivadas
11.
PLoS Pathog ; 17(5): e1009589, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003848

RESUMO

Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants and the elderly. RSV is a non-segmented negative strand RNA virus. The viral M2-1 protein plays a key role in viral transcription, serving as an elongation factor to enable synthesis of full-length mRNAs. M2-1 contains an unusual CCCH zinc-finger motif that is conserved in the related human metapneumovirus M2-1 protein and filovirus VP30 proteins. Previous biochemical studies have suggested that RSV M2-1 might bind to specific virus RNA sequences, such as the transcription gene end signals or poly A tails, but there was no clear consensus on what RSV sequences it binds. To determine if M2-1 binds to specific RSV RNA sequences during infection, we mapped points of M2-1:RNA interactions in RSV-infected cells at 8 and 18 hours post infection using crosslinking immunoprecipitation with RNA sequencing (CLIP-Seq). This analysis revealed that M2-1 interacts specifically with positive sense RSV RNA, but not negative sense genome RNA. It also showed that M2-1 makes contacts along the length of each viral mRNA, indicating that M2-1 functions as a component of the transcriptase complex, transiently associating with nascent mRNA being extruded from the polymerase. In addition, we found that M2-1 binds specific cellular mRNAs. In contrast to the situation with RSV mRNA, M2-1 binds discrete sites within cellular mRNAs, with a preference for A/U rich sequences. These results suggest that in addition to its previously described role in transcription elongation, M2-1 might have an additional role involving cellular RNA interactions.


Assuntos
RNA Mensageiro/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas Virais/genética , Replicação Viral
12.
PLoS Pathog ; 17(3): e1009428, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720995

RESUMO

EDP-938 is a novel non-fusion replication inhibitor of respiratory syncytial virus (RSV). It is highly active against all RSV-A and B laboratory strains and clinical isolates tested in vitro in various cell lines and assays, with half-maximal effective concentrations (EC50s) of 21, 23 and 64 nM against Long (A), M37 (A) and VR-955 (B) strains, respectively, in the primary human bronchial epithelial cells (HBECs). EDP-938 inhibits RSV at a post-entry replication step of the viral life cycle as confirmed by time-of-addition study, and the activity appears to be mediated by viral nucleoprotein (N). In vitro resistance studies suggest that EDP-938 presents a higher barrier to resistance compared to viral fusion or non-nucleoside L polymerase inhibitors with no cross-resistance observed. Combinations of EDP-938 with other classes of RSV inhibitors lead to synergistic antiviral activity in vitro. Finally, EDP-938 has also been shown to be efficacious in vivo in a non-human primate model of RSV infection.


Assuntos
Antivirais/farmacologia , Infecções por Vírus Respiratório Sincicial , Animais , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos
13.
PLoS Pathog ; 16(10): e1008987, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031461

RESUMO

The ribonucleocapsid complex of respiratory syncytial virus (RSV) is responsible for both viral mRNA transcription and viral replication during infection, though little is known about how this dual function is achieved. Here, we report the use of a recombinant RSV virus with a FLAG-tagged large polymerase protein, L, to characterize and localize RSV ribonucleocapsid structures during the early and late stages of viral infection. Through proximity ligation assays and super-resolution microscopy, viral RNA and proteins in the ribonucleocapsid complex were revealed to dynamically rearrange over time, particularly between 6 and 8 hours post infection, suggesting a connection between the ribonucleocapsid structure and its function. The timing of ribonucleocapsid rearrangement corresponded with an increase in RSV genome RNA accumulation, indicating that this rearrangement is likely involved with the onset of RNA replication and secondary transcription. Additionally, early overexpression of RSV M2-2 from in vitro transcribed mRNA was shown to inhibit virus infection by rearranging the ribonucleocapsid complex. Collectively, these results detail a critical understanding into the localization and activity of RSV L and the ribonucleocapsid complex during RSV infection.


Assuntos
Proteínas do Nucleocapsídeo/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Células A549 , Animais , Chlorocebus aethiops , Humanos , Proteínas do Nucleocapsídeo/genética , RNA Viral/genética , RNA Viral/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Ribonucleoproteínas/genética , Transcrição Gênica , Células Vero , Proteínas Virais/genética
14.
Structure ; 28(9): 977-978, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877647

RESUMO

The respiratory syncytial virus (RSV) M2-1 protein is essential for virus transcription. In this issue of Structure, Gao et al. (2020) describe the crystal structure of M2-1 in complex with RNA. This structure provides new insight into the RSV transcription mechanism but also raises an intriguing question regarding M2-1's function.


Assuntos
Vírus Sincicial Respiratório Humano , Humanos , RNA , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais/genética , Replicação Viral
15.
Nature ; 577(7789): 275-279, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31698413

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause severe respiratory diseases in infants and elderly adults1. No vaccine or effective antiviral therapy currently exists to control RSV or HMPV infections. During viral genome replication and transcription, the tetrameric phosphoprotein P serves as a crucial adaptor between the ribonucleoprotein template and the L protein, which has RNA-dependent RNA polymerase (RdRp), GDP polyribonucleotidyltransferase and cap-specific methyltransferase activities2,3. How P interacts with L and mediates the association with the free form of N and with the ribonucleoprotein is not clear for HMPV or other major human pathogens, including the viruses that cause measles, Ebola and rabies. Here we report a cryo-electron microscopy reconstruction that shows the ring-shaped structure of the polymerase and capping domains of HMPV-L bound to a tetramer of P. The connector and methyltransferase domains of L are mobile with respect to the core. The putative priming loop that is important for the initiation of RNA synthesis is fully retracted, which leaves space in the active-site cavity for RNA elongation. P interacts extensively with the N-terminal region of L, burying more than 4,016 Å2 of the molecular surface area in the interface. Two of the four helices that form the coiled-coil tetramerization domain of P, and long C-terminal extensions projecting from these two helices, wrap around the L protein in a manner similar to tentacles. The structural versatility of the four P protomers-which are largely disordered in their free state-demonstrates an example of a 'folding-upon-partner-binding' mechanism for carrying out P adaptor functions. The structure shows that P has the potential to modulate multiple functions of L and these results should accelerate the design of specific antiviral drugs.


Assuntos
Metapneumovirus/enzimologia , Fosfoproteínas/química , RNA Polimerase Dependente de RNA/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Metapneumovirus/genética , Modelos Moleculares , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
16.
Virology ; 540: 66-74, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739186

RESUMO

Respiratory syncytial virus (RSV) is significant for public health, capable of causing respiratory tract disease in infants, the elderly and the immunocompromised. The RSV polymerase is an attractive target for antiviral drug development, but as yet, there is no high throughput assay for analyzing RSV polymerase activity, specifically. In this study, using a primer elongation assay as a basis, we analyzed the tolerance of the RSV polymerase for modifications at the 5' end of the primer, and nucleotide analogs. The RSV polymerase was found to accept primers containing 5' biotin or digoxygenin modifications, and nucleotide analogs that are reactive or fluorescent, including 5-ethynyl UTP, 8-azido ATP, 2-amino PTP, and thieno-GTP. These findings provide a menu of options for developing non-isotopic high throughput assays for RSV polymerase RNA synthesis activity, and yield insight regarding the molecular biology of the polymerase complex.


Assuntos
Nucleotídeos/metabolismo , RNA/biossíntese , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Primers do DNA , Humanos , Nucleotídeos/química , RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Moldes Genéticos , Replicação Viral
17.
Trends Microbiol ; 27(12): 969-971, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31672264

RESUMO

Respiratory syncytial virus (RSV) inflicts a significant toll on human life. An essential element of the virus is its polymerase, a complex capable of transcribing and replicating the viral genome. In an exciting new advance, Gilman et al. resolve the structure of this polymerase, providing valuable mechanistic insight into its activities.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano/genética , Genoma Viral , Humanos , Replicação Viral
18.
Proc Natl Acad Sci U S A ; 116(17): 8535-8543, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962389

RESUMO

Most nonsegmented negative strand (NNS) RNA virus genomes have complementary 3' and 5' terminal nucleotides because the promoters at the 3' ends of the genomes and antigenomes are almost identical to each other. However, according to published sequences, both ends of ebolavirus genomes show a high degree of variability, and the 3' and 5' terminal nucleotides are not complementary. If correct, this would distinguish the ebolaviruses from other NNS RNA viruses. Therefore, we investigated the terminal genomic and antigenomic nucleotides of three different ebolavirus species, Ebola (EBOV), Sudan, and Reston viruses. Whereas the 5' ends of ebolavirus RNAs are highly conserved with the sequence ACAGG-5', the 3' termini are variable and are typically 3'-GCCUGU, ACCUGU, or CCUGU. A small fraction of analyzed RNAs had extended 3' ends. The majority of 3' terminal sequences are consistent with a mechanism of nucleotide addition by hairpin formation and back-priming. Using single-round replicating EBOV minigenomes, we investigated the effect of the 3' terminal nucleotide on viral replication and found that the EBOV polymerase initiates replication opposite the 3'-CCUGU motif regardless of the identity of the 3' terminal nucleotide(s) and of the position of this motif relative to the 3' end. Deletion or mutation of the first residue of the 3'-CCUGU motif completely abolished replication initiation, suggesting a crucial role of this nucleotide in directing initiation. Together, our data show that ebolaviruses have evolved a unique replication strategy among NNS RNA viruses resulting in 3' overhangs. This could be a mechanism to avoid antiviral recognition.


Assuntos
Ebolavirus , Genoma Viral/genética , RNA Viral , Replicação Viral/genética , Sequência de Bases/genética , Ebolavirus/genética , Ebolavirus/metabolismo , Ebolavirus/fisiologia , Nucleotídeos/genética , RNA Viral/biossíntese , RNA Viral/genética
20.
Antiviral Res ; 162: 142-150, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597184

RESUMO

The Third Tofo Advanced Study Week on Emerging and Re-Emerging Viruses (3rd TASW) was held in Praia do Tofo, Mozambique, from September 02 to 06, 2018. It brought together 55 participants from 10 African countries as well as from Belgium, China, Germany, Singapore, and the USA. Meeting sessions covered aspects of the epidemiology, diagnosis, molecular and structural biology, vaccine development, and antiviral drug discovery for emerging RNA viruses that are current threats in Africa and included flaviviruses (dengue and Zika), alphaviruses (chikungunya), coronaviruses, filoviruses (Ebola), influenza viruses, Crimean Congo hemorrhagic fever virus, Rift Valley fever Virus, Lassa virus, and others. Data were presented on recent flavivirus and/or chikungunyavirus outbreaks in Angola, Burkina Faso, and Mozambique. In addition, these viruses are endemic in many sub-Saharan countries. The TASW series on emerging viruses is unique in Africa and successful in promoting collaborations between researchers in Africa and other parts of the world, as well as among African scientists. This report summarizes the lectures held at the meeting and highlights advances in the field.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Vírus de RNA/patogenicidade , Animais , Febre de Chikungunya , Congressos como Assunto , Surtos de Doenças , Flavivirus/patogenicidade , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia , Doença pelo Vírus Ebola , Humanos , Moçambique , Zika virus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...